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Hot water heat pumps are well suited for demand side management, as the heat pump market faced a
rapid growth in the past years with the trend to decentralized domestic hot water use. Sales were accel-
erated through wants and needs of energy conservation, energy efficiency, and less restrictive rules
regarding Legionella. While in literature the model predictive control potential for heat pumps is com-
monly shown in simulations, the share of experimental studies is relatively low. To this day, experimen-
tal studies considering solely domestic hot water use are not available. In this paper, the realistic
achievable model predictive control potential of a hot water heat pump is compared to the standard hys-
teresis control, to provide an experimental proof. We show for the first time, how state-of-the-art
approaches (model predictive control, system identification, live state estimation, and demand predic-
tion) can be transferred from electric hot water heaters to hot water heat pumps, combined, and imple-
mented into a real-world hot water heat pump setup. The optimization approach, embedded in a realistic
experimental setting, leads to a decrease in electric energy demand and cost per unit electricity by
approximately 12% and 14%, respectively. Further, an increase in efficiency by approximately 13% has
been achieved.

� 2023 Published by Elsevier B.V.
1. Introduction

The heat pump (HP) market in the EU faced a growth of 81% in
the past years (2015–2020) [1], mostly driven by air-source HPs.
With this number in mind, one might ask if HPs with thermal
energy storages (TES) can provide additional flexibility for the inte-
gration of renewable energy generation. In this context, three use
cases are possible: 1) Space heating (SH), 2) domestic hot water
(DHW), and 3) a combination of both. In multi-family residential
complexes, decentralized DHW use increases in importance
because of energy conservation, energy efficiency, and less restric-
tive rules regarding Legionella [2]. Increasing sales of domestic hot
water heat pumps (HWHP) by þ15% in Germany (2020–2021)
show the promising trend of this technology [3].

To use the potential of HWHPs for renewable energy integra-
tion, demand shifting (DSM) via model predictive control (MPC)
is a promising approach compared to common rule-based
approaches, like standard hysteresis control (HYS) [4]. In literature,
MPC is of particular interest due to its high versatility in handling
multiple objectives [5,6]. Compared to HYS, MPC focuses on incen-
tives such as day-ahead spot market prices [2,7].

In literature, MPC is applied in both, simulations and experi-
mental studies.

Simulation studies commonly compare rule-based control
strategies of HPs like HYS to MPC approaches, assuming perfect
system knowledge. Mostly HPs with TES for SH and/or DHW in res-
idential buildings are considered. Investigations considering both,
DHW and SH operation, report cost savings of 11� 24% [8,9].
Results of studies with configurations for SH use only align with
that, and report cost and electric energy savings of 5� 34% and
13� 16%, respectively [10–13]. However, DHW configurations
present a higher impact on the potential, showing cost savings
up to 65% and energy savings of 20� 32% [14,15].

In contrast to the variety of simulation studies, experimental
studies are rare.

Kuboth et al. [16,17] operated two identical test rig setups in
parallel. Every test rig consisted of an HP with 500 liter TES for
SH use. In a short-term investigation (5 days) [16] and long-term
investigation (125 days) [17], MPC was compared to a HYS strat-
egy. The short-term investigation showed that the HP operation
was shifted from night to the morning and afternoon hours, while
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Nomenclature

Roman letters
c real time price (EUR/MWh)
Cel costs per unit electricity (EUR/MWh)
Cth costs per unit heat (EUR/MWh)
cw thermal capacity of water (kJkg�1K�1)
C total thermal capacitance (JK�1)
COP coefficient of performance (–)
Pel electric power HP compressor (W)
_Qdem hot water energy demand rate (W)
_Q loss energy losses to environment (W)
T average water temperature (K)
Tdem fixed draw-off temperature (K)
Tmax maximal average water temperature in storage (K)
Tmin minimal average water temperature in storage (K)
T in inlet water temperature (K)
Tout outlet water temperature (K)
T0 initial average water temperature in storage (K)
T1 ambient temperature (K)
Ttw thermal well temperature (K)
t time (s)
u switch signal (–)
UA overall heat transfer characteristics (WK�1)
_V volume flow rate (m3s�1

_Wel electrical energy input rate (W)

Calligraphic letters
THC set of discrete points in time (–)

Greek letters
. water density (kgm�3)

Super- and subscripts
x
�

estimation superscript (–)
x� prediction superscript (–)

Abbreviations
DDP data-driven probabilistic approach
DHW domestic hot water
DSM demand side management
EHWH electric hot water heater
HC heating cycles
HP heat pump
HWHP hot water heat pump
HYS hysteresis control
LP linear optimization problem
MPC model predictive control
PEM prediction error method
PP perfect prediction
RMSE root mean squared error
RTP real time price
SH space heating
TES thermal energy storage
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a cost reduction of 34% and an efficiency increase of 22% was
achieved. The long-term investigation verified the method and lead
to the results showing a cost reduction of 9%, a decrease in electri-
cal energy consumption of 4% and an efficiency increase of 5%.

The test rig of Péan et al. [18] comprises an HP for SH and DHW
including a 200 liter TES for DHW use only. A MPC approach is
compared to a HYS strategy. Within a three-day test period, results
showed a cost reduction of 7% and a minor increase in electrical
energy consumption. However, the MPC strategy often failed to
shift the DHW loads because of hardware control problems.
Although potential solutions to overcome this problem are implied,
the DHW potential could not be sufficiently proved.

To summarize: Despite the MPC potential of DHW use with heat
pumps is stated in literature [6,19,20], to this day, no experimental
validation in a realistic setting is available.

However, similar approaches with MPC focussing on DHWwere
already investigated in the field of electric hot water heaters
(EHWH). Demand forecasting was also already investigated in that
field. A good overview is provided in the PhD theses of two main
scientist, namely Kepplinger [21] and Ritchie [22].

Kepplinger et al. [23] proofed the MPC potential in an experi-
mental setup comprising an EHWH with 150 liter TES, and empha-
sized the importance of accurate demand forecasting. To obtain
more accurate DHW profiles, and to present an alternative to stan-
dard demand profiles, a data-driven probabilistic (DDP) approach
was developed by Ritchie et al. [24].

Summarized, literature lacks an experimental study on HP with
TES for DHW use. The study should compare a MPC to a HYS strat-
egy, considering realistic boundary conditions.

We want to overcome this lack and contribute the following
aspects to the community:

� The transfer and combination of state-of-the-art approaches of
EHWH to HWHP (MPC, system identification, live state estima-
tion, and demand prediction).
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� An experimental proof of the MPC potential of HWHPs by com-
parison of HYS and MPC covered in a realistic setting.

� Quantification of the savings and the DSM potential achievable
by a state-of-the-art prediction method in a realistic setting.

We achieve this by developing an experimental setup with an air-
source HWHP including 200 liter TES (cf. Section 2) featuring
state-of-the-art approaches for MPC, system identification, live
state estimation, and demand prediction [24–26] (cf. Section 3).
All novel approaches are implemented together for the first time
in a real-world environment.
2. Experimental setup

The test rig comprises an indoor installed off-the-shelf 200 liter
air-source HWHP (type Austria Email Explorer Evo 2 [27]). The
standard control of the HP system is based on a hysteresis with
7 Kelvin, where 55�C and 48�C represent the upper and the lower
threshold value, respectively, implemented using the manufac-
turer’s thermal well temperature sensor. The HYS itself serves as
a benchmark reference for the comparison to the MPC.

We equipped the HWHPwith sensors and actuators as shown in
Fig. 1. Temperatures Ttw; T in; Tout and ambient temperature T1 are
measured via K-Type thermocouples. The thermal well tempera-
ture sensor Ttw is non-invasively arranged in the storage next to
the manufacturer’s sensor. The water inlet temperature sensor
T in is installed in the inlet pipe. The hot water outlet temperature
Tout is measured in the outlet pipe next to the top of the storage.
Electric power consumption _Wel is recorded by a power meter
(type Lumel N27P [28]) with a maximum measurable power of
2:88 kW and a relative error in accuracy of �0:5%. Volume flow
rate _V is measured using a magnetic inductive flow meter (type
ifm electronic SM6000 [29]) with a relative error in accuracy of
�2%. The hot water demand _Qdem is determined by calculation



Fig. 1. Experimental setup including main components and sensor equipment.
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based on the volume flow rate _V , the water inlet temperature T in,
and the water outlet temperature Tout, assuming a constant specific
heat capacity of water cw ¼ 4:180 kJ= kgKð Þ. The hot water demand
profile is executed by a stepless-controllable 2-way motor valve
(type Bürkert 3280 [30]). Data acquisition, demand control signal,
and relays switch are carried out by the Gantner Instruments Q.
station-XT [31]. Relay switching is necessary for transferring the
optimal control signal u to the HP, by overruling the standard con-
trol setting.

3. Model predictive control approach

3.1. Thermal modelling and optimization problem

The MPC approach adapted from EHWHs [25] is presented in
Fig. 2. It is based on a incentive driven linear optimization problem
(LP) deduced by a single-node model of the HWHP’s TES, consider-
ing temperature limits as linear constraints and assuming a pre-
dicted demand Q �

dem. The model of the TES is based on an open
system energy balance resulting in the following ordinary differen-
tial equation:

C
d T

�

dt
¼ �Q

_

dem tð Þ þ COP �W
_

el tð Þ � Q
_

loss tð Þ; ð1Þ

where COP � _Wel represents the thermal heat input, _Q loss the losses

to the environment, and _Qdem the DHW demand, defined as
Fig. 2. Main processes and data streams of the MPC approach.
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_Qdem tð Þ ¼ _V tð Þ � . � cw Tout � T inð Þ; ð2Þ
_Wel tð Þ ¼Pel � u tð Þ; u tð Þ 2 0;1f g; ð3Þ
_Q loss tð Þ ¼UA T tð Þ � T1

� �
: ð4Þ

Here, _V is the water volume flow, . is the water density, cw is the
specific heat capacity of water, and UA is the overall heat transfer
characteristics of the storage. Eq. (1) can be solved analytically by
setting the initial condition T t0ð Þ ¼ �T0, which leads to

T
�

tð Þ ¼ T
�
0 � e �UA

C t�t0ð Þð Þ

þ 1� e �UA
C t�t0ð Þð Þ� � COP �W

_

el

UA
� Q

_

dem

UA
þ T1

2
4

3
5: ð5Þ

Eq. (5) can be used to formulate the optimization problem by

assuming piecewise constant values for c tð Þ; _Qdem tð Þ and _Wel tð Þ for
a set of N time steps of a duration of Dt, i.e.,

T
�

t0 þ iDtð Þ ¼ T
�

t0ð Þ � ki

þ
Xi�1

j¼0

1� kð Þki�j�1 COP �W
_

jð Þ
el

UA
� Q

_
jð Þ
dem

UA
þ T1

0
@

1
A

2
4

3
5;

k ¼ e �UA
C Dtð Þ: ð6Þ

Eq. (6) can be solved through an iterative process indicated by i and
j for the defined set of N time steps.

Assuming a predicted demand Q �
dem, the LP stated as cost min-

imization for DHW heating can be formulated as follows to find the
optimal solution vector for switching the HP.

u 1ð Þ
opt; � � � ;u Nð Þ

opt

� �
¼ min

u 1ð Þ ;���;u Nð Þ

PN
i¼0

c ið Þ � u ið Þs:t:

Tmax P T
�

jð Þ8j;
Tmin 6 T

�
jð Þ8j : Q

_
jð Þ�
dem > 0;

ð7Þ

where the storage temperature is kept below the set maximum
temperature Tmax and kept above the minimum temperature Tmin

during DHW draw-offs. Details of the LP formulation and the matrix
notation can be found in Kepplinger et al. [25].

3.2. System identification and state estimation

According to Eq. (1), three system parameters are to be esti-
mated: the total thermal capacitance C, the overall heat transfer
characteristics UA, and the HP’s coefficient of performance COP.
The thermal capacitance is calculated from the known physical
properties (water mass, temperature spread and specific heat
capacity of water). The heat transfer characteristics and coefficient
of performance are estimated using the prediction error method
(PEM).

For identifying the system parameters UA and COP, the aim is to
minimize the root mean squared error (RMSE) between approxi-
mated average storage temperature T and measured thermal well
temperature T tw for a given set of historical data at discrete points
in time t 2 THC, as following:

fUA; gCOP ¼ arg min
UA;COP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
t2THC

�T tð Þ � Ttw tð Þ� �2
jTHCj

vuuut
:
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THC specifies the set of points in time, where the measured thermal
well temperature can be assumed to be a good estimate for the
average storage temperature. Heating cycles (HC) are suitable time
sets, since TES charging is considered as an aspect of de-
stratification [26,32]. To assume an uniform temperature distribu-
tion in the TES, the thermal well temperature has to be close to
the upper layer temperature. This is true, if the thermal well tem-
perature exceeds the outlet temperature during the last draw event,
representing the upper layer temperature.

To calculate the set THC of points in time, which allow to
assume a uniform temperature distribution, we follow the
approach presented in [26]. The set is the join of the subsets of
all heating cycles h,
THC ¼
[
h

ton; tcool½ 	; ð9Þ
where the different points in time can be described as follows (cf.
Fig. 3):

1. ton: Start of heating cycle;
2. tuni: Exceedance of thermal well temperature compared to the

outlet temperature of the last prior demand marks point in time
assuming nearly uniform temperature distribution;

3. toff : End of heating cycle;
4. tcool: End of cooling-off phase after the heating cycle and previ-

ous to the next DHW demand.

The PEM resulted in the parameters of UA ¼ 1:828 W=K and
COP ¼ 3:031 with an RMSE ¼ 1:410 K. The calculation of the ther-
mal capacitance resulted in C ¼ 8:360 � 105 J=K.

During execution of the MPC, prior to each optimization, the
average temperature of the TES has to be estimated (cf. Eq. (5)),
which serves as initial condition of the model, cf. Eq. 7. Whenever
a uniform temperature distribution according to the method
described before can be assumed (cf. Eq. 9), the average tempera-
ture is assumed to be equal to the thermal well temperature.
Otherwise, the model as described in Eq. 5 is used to calculate
the average temperature forward in time considering the mea-
sured data (compressor power, temperatures of the surroundings,
and hot water demand).
Fig. 3. System identification procedure according to Kepplinger [26].
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3.3. User scenarios

The DHW profiles by Ritchie et al. [24] are used to provide a
base for comparison of HYS and MPC. Matching properties (house-
hold size, storage size and dimensions) of HWHPs and EHWHs
enable the profile transfer to our work. An algorithm was devel-
oped to execute DHW profiles on the test rig. Hence, we have con-
verted the profiles from the original quantity volume flow to
energy, with a fixed draw-off temperature Tdem ¼ 38�C.

In the first scenario, we assume perfect foreknowledge of the
DHW demand, referred to as perfect prediction (PP).

In a second scenario, we use the prediction according to the
DDP method by Ritchie et al. [24].

By comparing both scenarios, we are able to evaluate howmuch
of the perfect scenario’s potential is achievable through a state-of-
the art prediction method. Both profiles, the DDP and the actual
user demand are compared cumulatively to show the prediction
errors in Fig. 4.
3.4. Stock market price

As incentive function c tð Þ, the EXAA day-ahead stock market
prices [33] of a typical winter week with 15-min resolution are
used. The EXAA prices for the upcoming day are considered to be
known at midnight.
3.5. Live routine

The whole framework including all algorithms is developed in
Python language.

Sensor data is acquired at a resolution of 60 s and stored on the
cloud-edge environment of Gantner Instruments [34]. The opti-
mization routine works in a 15-min interval to find the best switch-
ing state by serving a prediction horizon up to 24 h dependent on
the incentive available. Thereby, the average temperature as central
element of decision making is repetitively calculated, using state
estimation prior to the optimization. After optimization, the solu-
tion vector is executed to switch the HP unit accordingly.

The control framework given from the manufacturer poses two
difficulties to overcome: a) delay until start of HP operation and b)
operation in dead band.
Fig. 4. Cumulative demand comparison of actual user demand and prediction.
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1. To stabilize operation conditions, the manufacturer executes
the fan operation before the actual compressor start. Hence, a
pre-switching strategy is executed prior to the current
optimization.

2. The hysteresis does not support the operation inside the tem-
perature dead band until the lower threshold value is reached.
To facilitate this unused potential, the control memory of the
HP has to be reset by switching the HP off and on again.
Fig. 5. Comparison of thermal well temperature and calculated average storage
temperature for perfect prediction (PP).
4. Results and discussion

4.1. Analysis of MPC potential

To verify the MPC potential, experimental HWHP data of HYS
and two MPC scenarios for a typical winter week are considered.
The data are compared with respect to: 1) consumed electric
energy, 2) total DHW demand, 3) coefficient of performance, 4)
costs per unit electricity, 5) costs per unit heat, 6) total cost for
electricity, 7) total operation time, and 8) HP start-ups, cf. Table 1.

In HYS mode the thermal well temperature Ttw;HYS strives to the
set temperature of Tmax ¼ 55�C (cf. Fig. 6, subplot 3), whereas the
average storage temperatures in both MPC modes are kept within
the limits according to the optimization. In detail, this can be
observed in Fig. 5, where the thermal well temperature T tw;PP

matches closely the calculated average storage temperature
Tcalc;PP. Hence, Fig. 6 (subplot 2) shows that in PP and DDP mode,
the electrical power is predominantly consumed in local price min-
ima, whereas in hysteresis mode it follows a clear demand depen-
dent pattern. Consequently, compared to the hysteresis, the
electrical input decreased by 19:50%, and 11:38% in PP and DDP
mode, respectively. Additionally, the total operation time
decreases by 32:78% (PP), and 22:01% (DDP), respectively, cf.
Table 1. Thus, shorter operation times and less electricity con-
sumption results in an efficiency increase of 24:07% (PP), and
12:70% (DDP), respectively. The costs per unit electricity decreased
by 17:23% and 14:20%, the costs per unit heat by 33:29% and
23:86%, and the total cost for electricity by 33:37% and 23:96%
for PP and DDP scenario, respectively, compared to the hysteresis.

Fig. 7 shows that especially in longer heating periods the execu-
tion of the given switching signal (blue) failed several times (red
areas). The failure stems from the error in state estimation, as
the energy input realized exceeds the one expected by the
optimization.

While we achieve a reduction of electrical energy and cost in
the realistic scenario by about 11:4%, and 24%, respectively, the
reductions in literature range from 4� 22% and from 7� 34%
[16,18,23]. For the COP, we achieve an increase of about 12:7%, lit-
erature reports values of 5� 22% [16,18].
Table 1
Aggregated experimental quantities for hysteresis (HYS) and MPC for the two scenarios:
demand, a common week in winter is considered. Quantities from top to bottom: Consu
electricity, costs per unit heat, total cost for electricity, total operation time and HP start-

Parameter HYS PP

Wel kWhð Þ 19.32 15.55
Qdem kWhð Þ 37.15 37.10
COP �ð Þ 1.92 2.39

Cel €=MWhð Þ 70.89 58.68
Cth €=MWhð Þ 36.87 24.60P

Cel €ð Þ 1.37 0.91
Total operation time (h) 80.53 54.13

HP start-ups (–) 15.00 30.00

5

4.2. Efficiency and comfort conditions

The COP increase of the MPC scenarios (cf. Table 1) can be ana-
lyzed by the following observations: Fig. 8 (left) shows the decline
of the operation time per cycle, where the average operation time
for the DDP and PP scenario decreases by about 40% compared to
the hysteresis. In terms of power, the HP operates in a 3.4-times
broader range and the lower quartile decreases down to about
280 W in the optimized cases, cf. Fig. 8 (right). Further observation
in Fig. 9 (right) show the decline of the average thermal well tem-
perature down to about 45�C and the increase of the interquartile
range in the optimized cases. Hence, the comparison of the box-
plots of Figs. 8 and 9 reveals how the decrease in operation time
and power consumption results in lower thermal well
temperatures.

The comparison of the interquartile range of both box plots,
thermal well temperature and storage outlet temperature (cf.
Fig. 9 (left and right)), shows that short heating cycles (cf. Fig. 8
(left)) can lead to stratification in the storage. Thus, by extension
of the temperature band, thermal losses of the storage decrease
compared to the higher temperature level in the hysteresis mode,
and this inherently increases the efficiency of the storage [32].

However, through the extension of the temperature band, the
lower quartile of the thermal well temperatures in the PP case
(cf. Fig. 9 (right)) shows a violation of the minimum set-
Perfect prediction (PP) and data-driven probabilistic prediction (DDP). For the DHW
med electric energy, total DHW demand, coefficient of performance, costs per unit
ups.

DDP Rel. deviation (PP/DDP)

17.13 �19.50%/ �11.38%
37.10 �0.13%/ �0.13%
2.17 +24.07%/ +12.70%
60.83 �17.23%/ �14.20%
28.07 �33.29%/ �23.86%
1.04 �33.37%/ �23.96%
62.80 �32.78%/ �22.01%
29.00 +100.00%/ +93.34%



Fig. 6. Comparison of electrical power, thermal well and outlet temperatures for hysteresis (HYS), perfect prediction (PP) and data-driven probabilistic prediction (DDP).

Fig. 7. Failed switching (red areas) compared to actual electrical power consumption (black) in the PP scenario.
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temperature. As further noticed in Fig. 6 (subplot 3), the thermal
well temperatures drop below the minimum set-temperature in
both MPC modes. While the thermal well temperature gives a first
insight of the temperature in the storage, the storage outlet tem-
perature is the important quantity to assess the user’s comfort.
The storage outlet temperature represents the draw-off tempera-
ture experienced by the user. Fig. 6 (subplot 4) and Fig. 9 (left)
show that user’s comfort is maintained at all times as the outlet
temperatures stay above the set-temperature limit of
6

Tmin ¼ 38�C. The results proof the capability of the MPC strategy
to shift loads and save costs, while maintaining user comfort.

5. Conclusions

Heat pumps with thermal energy storages can provide addi-
tional flexibility for renewable energy integration through their
ability to shift loads. In multi-family residential complexes, where
the rules regarding Legionella are strict, decentralized heat pump



Fig. 8. Comparison of hysteresis (HYS), perfect prediction (PP) and DDP prediction
(DDP) scenario for: Operation time (left) and power consumption (right).

Fig. 9. Comparison of hysteresis (HYS), perfect prediction (PP) and DDP prediction
(DDP) scenario for: outlet temperature (left) and thermal well temperature (right).

Fig. A.10. Comparison of hysteresis (HYS), perfect prediction (PP) and DDP
prediction (DDP) scenario for: DHW demand (left) and draw-off volume (right).
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systems for DHW supply can provide a viable solution. However, to
this day, experimental studies with model predictive control
approaches considering solely domestic hot water use have not
been available.

Therefore, we showed for the first time, how state-of-the-art
approaches (MPC, system identification, live state estimation, and
demand prediction) can be transferred from electric hot water hea-
ters (EHWH) to hot water heat pumps (HWHP), combined, and
deployed in a real-world HWHP setup. We applied the system
identification method, to be able to determine the best parameter
set of the model. The automated state estimation method stabi-
lized the routine by reducing modelling errors during live opera-
tion. As the demand and it’s prediction are crucial for thermal
energy storage management, where the utilisation of the flexibility
lays within, our realistic demand prediction method was key to
enable realistic achievable scenarios.

We also provide results for the significant MPC potential of
DHW use with HPs compared to the standard hysteresis control.
7

Decreased electric energy demand, electricity cost, and increased
energy efficiency, have been achieved in a realistic experimental
setting, while maintaining the user’s comfort at all times. The
experimental results quantify and validate the savings, as well as
the DSM potential, achievable by a state-of-the-art prediction
method in two prediction scenarios. In the perfect scenario, a
decrease in costs per unit electricity and electric energy of 17:2%
and 19:5%, respectively, as well as an increase of the COP of
24:1% was achieved. For the realistic scenario the costs per unit
electricity and electric energy decreased by 14:2% and 11:4%,
respectively, while the COP increased by 12:7%. By accounting
for higher stratification in the TES, cost and energy savings could
be attainable by adaption to a multi-node model as suggested in
[26].

Further, the experimental implementation revealed challenges
of the interaction with the HP’s local controller and the fixed man-
ufacturer settings. For further work with similar experimental set-
ups, scientists might face the same problems and should pay
attention to these.
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